Number Theory Homework #2 Spring 2025

Instructor: Chan Ieong Kuan

Solutions by: **Haoyu Zhu**

EXERCISES

3 Congruence

1. Exercise 3.17:

Proof. (\Rightarrow): If there exists $x_0 \in \mathbb{Z}_n$ solving $f(x) \equiv 0 \pmod{n}$, then it simultaneously solves $f(x) \equiv 0 \pmod{p_i^{a_i}}$ as an element in $\mathbb{Z}_{p_i^{a_i}}$ after applying the carnonical projection

 $\mathbb{Z}_n \to \mathbb{Z}_{p_i^{a_i}}$. This is well-defined because $f(x) \in \mathbb{Z}[x]$ and $n = \prod_{i=1}^t p_i^{a_i}$.

(\Leftarrow): Assume that $f(x_i) \equiv 0 \pmod{p_i^{a_i}}$ for each i. Equivalently speaking, $f(x_i) = 0 \in \mathbb{Z}_{p_i^{a_i}}$ with $x \in \mathbb{Z}_{p_i^{a_i}}$ and $f(x) \in \mathbb{Z}_{p_i^{a_i}}[x]$. In terms of **Chinese Remainder Theorem**, $p_i^{a_i}$ being pairwise relatively prime integers, we can find a unique $x_0 \in \mathbb{Z}_n$ such that $x_0 = x_i$ in $\mathbb{Z}_{p_i^{a_i}}$ as projecting $\mathbb{Z}_n \to \mathbb{Z}_{p_i^{a_i}}$ carnonically. Now embedding $\mathbb{Z}_{p_i^{a_i}}$ and $\mathbb{Z}_{p_i^{a_i}}[x]$ into \mathbb{Z}_n and $\mathbb{Z}_n[x]$, respectively, we establish that $f(x_0) = 0 \in \mathbb{Z}_n$ since moreover,

$$\mathbb{Z}_n = \bigoplus_{i=1}^t \mathbb{Z}_{p_i^{a_i}}.$$

Remark that a ring-theoretic-free but equivalent argument is as below: since $f(x_0) \equiv 0$ modulo every $p_i^{a_i}$, $f(x_0) \equiv 0$ modulo their least common multiple, write

$$lcm_i(p_i^{a_i}) = \prod_{i=1}^t p_i^{a_i} = n.$$

2. Exercise 3.18:

Proof. As the carnonical mappings show in 1 (Ex. 3.17), every $x_0 \in \mathbb{Z}_n$ one-to-one corresponds to the t-tuple $(x_i)_i$, and vice versa. According to the principle of multiplicity in combinatorics, $N = N_1 \cdots N_t$.

3. Exercise 3.19:

Proof. Over the ring \mathbb{Z}_{p^a} , $x^2 = 1 \Leftrightarrow (x-1)(x+1) = 0$. Consequently, assuming first $x \neq \pm 1$, (x-1) and (x+1) are zero devisors, which implies that p devides both of them and hence, their difference (x+1) - (x-1) = 2. However, p is an odd prime, which leads to contradiction. Thus, the solutions have to be only ± 1 .

4. Exercise 3.20:

Proof. \bullet $b=1: x=1 \in \mathbb{Z}_2$.

- $b = 2 : x = \pm 1 \in \mathbb{Z}_4$.
- $b \ge 3$: $(x+1)(x-1) = 0 \in \mathbb{Z}_{2^b}$. Since (x+1) and (x-1) share the same sign with a greatest common devisor less or equal than 2 over \mathbb{Z}_{2^b} , we need and only need one of them being devided by 2^{b-1} . Therefore, there are precisely four solution.

5. Exercise 3.21:

Proof. Say $n = 2^b \prod_{i=1}^t p_i^{a_i}$. In light of multiplicity formula as in 2,

$$N = N(2) \prod_{i=1}^t N(p_i^{a_i}) = N(2) * 2^t,$$

where N(2) is the number of solutions to $x^2 = 1 \pmod{2_1^p}$ given by 4.

4 Unit group

6. Exercise 4.6: Show that 3 is a primitive root modulo p, a Fermat prime of the form $2^n + 1$.

Proof. Otherwise, with $p=2^n+1$ a prime, we can define its primitive root, say g, and hence $3 \equiv g^k \pmod{p}$, where k satisfies $1 < k < p-1 = 2^n$. Since $g^{2^n} \equiv 1 \pmod{p}$, we know that k devides 2^n and $3^{\frac{2^n}{k}} \equiv 1 \pmod{p}$. Therefore, k is even and 3 is a quadratic

residue modulo p. However, for every $n \ge 4$, $2^n + 1 \equiv 2 \pmod{3}$, so by law of quadratic reciprocity,

$$\left(\frac{3}{2^n+1}\right)\left(\frac{2^n+1}{3}\right) = (-1)^{(2^{n-1})(1)} \Leftrightarrow \left(\frac{3}{2^n+1}\right)(-1) = 1 \Leftrightarrow \left(\frac{3}{2^n+1}\right) = -1,$$

which contradicts that 3 is a quadratic residue.

When $n \leq 3$, i.e. p = 5, it is easy to verify that 3 is a primitive root.

(Remark: I fail to find any solution not using the LAW OF QUADRATIC RESIDUES ...) \Box

7. Exercise 4.11:

Proof. Denote by g some generator of $U(\mathbb{Z}_p) = \{1, 2, \dots, p-1\}$, i.e. one of the primitive roots modulo p. Then, $g^{p-1} = 1 \in \mathbb{Z}_p$. We do all our next computation over \mathbb{Z}_p .

When $p-1 \nmid k \Leftrightarrow g^k \neq 1$ in \mathbb{Z}_p ,

$$\sum_{i=1}^{p-1} i^k = \sum_{i=0}^{p-2} (g^i)^k = \sum_{i=0}^{p-2} (g^k)^i = \frac{g^{(p-1)k} - 1}{g^k - 1} = 0.$$

When $p-1 \mid k \Leftrightarrow g^k = 1 \in \mathbb{Z}_p$,

$$\sum_{i=1}^{p-1} i^k = \sum_{i=0}^{p-2} (g^k)^i = \sum_{i=0}^{p-2} 1 = p - 1 = -1.$$

5 Quadratic Residues

8. Exercise 5.5:

Proof. Provided that $p \nmid a$,

$$\sum_{x=0}^{p-1} ((ax+b)/p) = \sum_{x=0}^{p-1} (x/p) = 0.$$

The last equation holds because there are as many non-residues as residues. \Box

9. Exercise 5.11:

3

Proof. Note that $2^p = 2^{(q-1)/2} = (2/q) = (-1)^{q^2-1/8} = (-1)^{p^2+p/2} = 1 \in \mathbb{Z}_q$. The last equation is obtained from the fact that $p \equiv 3 \pmod{4}$. Thus, prime q is a factor of $2^p - 1$, completing the proof.

10. Exercise 5.29:

Proof. Write the primitive root in \mathbb{Z}_p as g, hence write $i = g^{e_i}$, $i = 1, 2, \dots, p-1$. Besides, denote the numbers of residues and nonresidues by, respectively, (R), (N). We have already known very clearly that $(R) = (N) = \frac{p-1}{2}$.

Now the set (with ascending order) $\{1, 2, \dots, p-1\}$ can be represented in the same order by $\{e_1, e_2, \dots, e_{p-1}\}$, and some i is a quadratic residue if and only if k_i is an even integer.

We can first without any effort conduct the total counting:

$$p - 2 = (RR) + (NR) + (RN) + (NN). \tag{1}$$

Then, since 1 is always a quadratic residue and $(-1/p) \equiv (-1)^{(p-1)/2} \pmod{p}$, the numbers of each pair depend on the residue of p modulo 4. From another perspective, if we add (p-1,1) into these (p-2) pairs and complete the cycle in $U(\mathbb{Z}_p)$, then we obtain exactly:

$$(RR) + (RN) = (NR) + (NN) = (RR) + (NR) = (RN) + (NN) = \frac{p-1}{2}.$$

Thus, we only need to exam which type (p-1,1) falls into and then cancel it out.

• When $p \equiv 3 \pmod{4}$, we compute $(-1/p) \equiv (-1)^{(p-1)/2} \equiv -1 \pmod{p}$. Therefore, the (p-1,1) = (NR).

$$(RR) + (RN) = \frac{p-1}{2},$$

$$(NR) + (NN) = \frac{p-1}{2} - 1,$$

$$(RR) + (NR) = \frac{p-1}{2} - 1,$$

$$(RN) + (NN) = \frac{p-1}{2}.$$

• When $p \equiv 1 \pmod{4}$, we compute $(-1/p) \equiv 1 \pmod{p}$. In this case, the (p-1,1) = (RR).

$$(RR) + (RN) = \frac{p-1}{2} - 1,$$

$$(NR) + (NN) = \frac{p-1}{2},$$

$$(RR) + (NR) = \frac{p-1}{2} - 1,$$

$$(RN) + (NN) = \frac{p-1}{2}.$$

11. Exercise 5.30:

Proof. Since n, n+1, p are pairwise relatively prime integers, (n(n+1)/p) = (n/p)(n+1/p). It equals to 1 for (RR), (NN) pairs and -1 for the others, hence the first equation.

It remains to show that the sum is -1. We prove Ex. 8 as our lemma first. I would like to try another method¹ instead of the method of **Double Counting** following Ex.6 and 7 in the books (I did compute them).

Define a matrix (noticing that i,j here are not conventionally starting from 1 but 0)

$$A = (((i+j^2)/p))_{0 \le i,j \le p-1} = \begin{bmatrix} 0 & 1 & \cdots & 1 & 1 \\ (1/p) & (2/p) & \vdots & (5/p) & (2/p) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ (-1/p) & 0 & \cdots & (3/p) & 0 \end{bmatrix}_{p \times p}.$$

The summation of first row is p-1. **GAP:** (The other rows, $((i+j^2)/p)_j$ with nonzero² i fixed, have the same summation). Note that every column sums up to be 0, thereby summation of every entry is 0. As a result,

$$\sum_{i=0}^{p-1} (i+j^2)/2 = -1, i \neq 0.$$

The summation of ((n(n+1))/2) can be regarded as the trace of A. (But this perspective seems useless.)

¹It has a gap and I wonder how to prove it.

²in the sense of \mathbb{Z}_p .

Replace n^{n+1} by $(n+2^{-1})^2-(2^{-1})^2$ which is well-defined for all odd primes, then apply Ex.8, where $i=-(2^{-1})^2$ and $j=n+2^{-1}$. Obvious to see that when n runs through [p-1], so does $n+2^{-1}$.

12. Exercise 5.31:

Proof.

Then plug-in the previous results and complete the verification.